Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.493
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 929: 172599, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38657807

RESUMO

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) is a biobased and biodegradable polymer that could efficiently replace fossil-based plastics. However, its widespread deployment is slowed down by the high production cost. In this work, the techno-economic assessment of the process for producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from low-cost substrates, such as methane and valeric acid derived from the anaerobic digestion of organic wastes, is proposed. Several strategies for cost abatement, such as the use of a mixed consortium and a line for reagent recycling during downstream, were adopted. Different scenarios in terms of production, from 100 to 100,000 t/y, were analysed, and, for each case, the effect of the reactor volume (small, medium and large size) on the selling price was assessed. In addition, the effect of biomass concentration was also considered. Results show that the selling price of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) is minimum for a production plant with 100,000 t/y capacity, accounting for 18.4 €/kg, and highly influenced by the biomass concentration since it can be reduced up to 8.6 €/kg by increasing the total suspended solids from 5 to 30 g/L, This adjustment aligns the breakeven point of PHBV with the reported average commercial price.


Assuntos
Biomassa , Reatores Biológicos , Ácidos Graxos Voláteis , Metano , Poliésteres , Poli-Hidroxibutiratos , Metano/análise , Ácidos Graxos Voláteis/análise , Biopolímeros
2.
Biotechnol Lett ; 46(3): 355-371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38607603

RESUMO

OBJECTIVES: Bacillus subtilis is a plant growth promoting bacterium (PGPB) that acts as a microbial fertilizer and biocontrol agent, providing benefits such as boosting crop productivity and improving nutrient content. It is able to produce secondary metabolites and endospores simultaneously, enhancing its ability to survive in unfavorable conditions and eliminate competing microorganisms. Optimizing cultivation methods to produce B. subtilis MSCL 897 spores on an industrial scale, requires a suitable medium, typically made from food industry by-products, and optimal temperature and pH levels to achieve high vegetative cell and spore densities with maximum productivity. RESULTS: This research demonstrates successful pilot-scale (100 L bioreactor) production of a biocontrol agent B. subtilis with good spore yields (1.5 × 109 spores mL-1) and a high degree of sporulation (>80%) using a low-cost cultivation medium. Culture samples showed excellent antifungal activity (1.6-2.3 cm) against several phytopathogenic fungi. An improved methodology for inoculum preparation was investigated to ensure an optimal seed culture state prior to inoculation, promoting process batch-to-batch repeatability. Increasing the molasses concentration in the medium and operating the process in fed-batch mode with additional molasses feed, did not improve the overall spore yield, hence, process operation in batch mode with 10 g molasses L-1 is preferred. Results also showed that the product quality was not significantly impacted for up to 12 months of storage at room temperature. CONCLUSION: An economically-feasible process for B. subtilis-based biocontrol agent production was successfully developed at the pilot scale.


Assuntos
Bacillus subtilis , Biomassa , Reatores Biológicos , Meios de Cultura , Esporos Bacterianos , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/metabolismo , Meios de Cultura/química , Reatores Biológicos/microbiologia , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Projetos Piloto
3.
J Environ Manage ; 358: 120904, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643624

RESUMO

This study focused on the economic feasibility of two potential industrial-scale bioleaching technologies for metal recovery from specific metallurgical by-products, mainly basic oxygen steelmaking dust (BOS-D) and goethite. The investigation compared two bioleaching scaling technology configurations, including an aerated bioreactor and an aerated and stirred bioreactor across different scenarios. Results indicated that bioleaching using Acidithiobacillus ferrooxidans proved financially viable for copper extraction from goethite, particularly when 5% and 10% pulp densities were used in the aerated bioreactor, and when 10% pulp density was used in the aerated and stirred bioreactor. Notably, a net present value (NPV) of $1,275,499k and an internal rate of return (IRR) of 65% for Cu recovery from goethite were achieved over 20-years after project started using the aerated and stirred bioreactor plant with a capital expenditure (CAPEX) of $119,816,550 and an operational expenditure (OPEX) of $5,896,580/year. It is expected that plant will start to make profit after one year of operation. Aerated and stirred bioreactor plant appeared more reliable alternative compared to the aerated bioreactor plant as the plant consists of 12 reactors which can allow better management and operation in small volume with multiple reactors. Despite the limitations, this techno-economic assessment emphasized the significance of selective metal recovery and plant design, and underscored the major expenses associated with the process.


Assuntos
Acidithiobacillus , Reatores Biológicos , Metalurgia , Acidithiobacillus/metabolismo , Cobre , Minerais , Compostos de Ferro
4.
J Biotechnol ; 387: 23-31, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38548020

RESUMO

Enzyme immobilization in membrane bioreactors has been considered as a practical approach to enhance the stability, reusability, and efficiency of enzymes. In this particular study, a new type of hybrid membrane reactor was created through the phase inversion method, utilizing hybrid of graphene oxide nanosheets (GON) and polyether sulfone (PES) in order to covalently immobilize the Candida rugosa lipase (CRL). The surface of hybrid membrane was initially modified by (3-Aminopropyl) triethoxysilane (APTES), before the use of glutaraldehyde (GLU), as a linker, through the imine bonds. The resulted enzymatic hybrid membrane reactors (EHMRs) were then thoroughly analyzed by using field-emission scanning electron microscopy (FE-SEM), contact angle goniometry, surface free energy analysis, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, attenuated total reflection (ATR), and energy-dispersive X-ray (EDX) spectroscopy. The study also looked into the impact of factors such as initial CRL concentration, storage conditions, and immobilization time on the EHMR's performance and activity, which were subsequently optimized. The results demonstrated that the CRLs covalently immobilized on the EHMRs displayed enhanced pH and thermal stability compared to those physically immobilized or free. These covalently immobilized CRLs could maintain over 60% of their activity even after 6 reaction cycles spanning 50 days. EHMRs are valuable biocatalysts in developing various industrial, environmental, and analytical processes.


Assuntos
Reatores Biológicos , Estabilidade Enzimática , Enzimas Imobilizadas , Lipase , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Lipase/metabolismo , Lipase/química , Membranas Artificiais , Grafite/química , Saccharomycetales/enzimologia , Glutaral/química , Espectroscopia de Infravermelho com Transformada de Fourier , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Temperatura , Difração de Raios X
5.
Chemosphere ; 355: 141804, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548077

RESUMO

In this work, a one-stage dual internal circulation airlift anaerobic/anoxic/aerobic (DCAL-A2O) bioreactor was continuously operated for concurrent removal of nutrients and organics from milk processing wastewater (MPW). Special configuration of the airlift A2O bioreactor created possibility of the formation of desired anaerobic, anoxic and aerobic zones in a single unit. The process functionality of the bioreactor was examined under three influential operating variables i.e. hydraulic retention time (HRT; 7-15 h), air flow rate (AFR; 1-3 L/min) and aerobic volume ratio (AVR; 0.324-0.464). The optimum region was identified at HRT of 13h, AFR of 2L/min and AVR of 0.437, leading to TCOD, TN and TP removal efficiency of 94.5 %, 59.6 %, and 62.2 %, respectively, and effluent turbidity of 8 NTU. The impact of feed biodegradability on the process performance of the bioreactor treating the MPW, soft drink wastewater (SDW) and soybean oil plant wastewater (SOW) was also assessed. From the results, the feed characteristics affected significantly the nutrients removal. Moreover, the feeding location played an effective role in the nutrient removal while treating the MPW at optimum operating conditions. In this study, the change in residual organic matters as soluble microbial products (SMP) was monitored at various operating conditions. In addition, the impact of SMP extracted from sludge, extracellular polymeric substances (EPS) comprising of loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) was analyzed on sludge characteristics as bio-flocculation and settleability properties. According to the obtained data, the increase in operating variables led to the reduction in contents of effluent SMP, sludge SMP, LB-EPS, turbidity, and SVI, thereby, the enhancement in the sludge characteristics. Meanwhile, analysis of microbial communities verified the presence of various functional bacterial species. The cost operating evaluation confirmed the cost effectiveness of the airlift A2O bioreactor in reduction of energy consumption for the MPW treatment.


Assuntos
Esgotos , Águas Residuárias , Animais , Carbono , Leite , Nutrientes , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos
6.
Chemosphere ; 354: 141666, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494001

RESUMO

While anaerobic digestion (AD) has been employed for the degradation of chlorinated aliphatic hydrocarbons, the associated digester performance might suffer from volatile fatty acids accumulation, insufficient substrate-microbes interaction, and lower biogas yields. To overcome these limitations, this study is the first to augment the hydrocarbon-degrading microbial capacities by adding agricultural waste-based biochar to the digestion medium. 1,2-dichloroethane (1,2-DCA) was selected as the target pollutant because it is discharged in large quantities from oil refining, petrochemical, and chemical industries, causing serious environmental and human health concerns. A multi-chamber anaerobic reactor (MAR) was operated at a 1,2-DCA loading rate of 1.13 g/L/d, glucose dosage (as an electron donor) range of 200-700 mg/L, and hydraulic retention time of 11.2 h, giving dechlorination = 32.2 ± 6.9% and biogas yield = 210 ± 30 mL/g CODremoved. These values increased after biochar supplementation (100 mg/g volatile solids, VS, as an inoculum carrier) up to 60.2 ± 11.5% and 290 ± 40 mL/g CODremoved, respectively, owing to the enhancement of dehydrogenase enzyme activities. Burkholderiales (15.3%), Clostridiales (2.3%), Bacteroidales (3.5%), Xanthomonadales (3.3%), and Rhodobacterales (6.1%) involved in 1,2-DCA degradation were dominant in the reactor supplemented with biochar. It's suggested that biochar played a major role in facilitating the direct interspecies electron transfer (DIET) between syntrophic bacteria and methanogens, where chloride, ethylene glycol, and acetate derived from 1,2-DCA dechlorination could be further used to promote methanogenesis and methane production. The synergetic effect of adsorption and dechlorination towards 1,2-DCA removal was validated at various biochar dosages (50-120 mg/g) and 1,2-DCA concentrations (50-1000 mg/L). The techno-economic results showed that the cost of treating 1,2-DCA-laden discharge (100 m3/d) by the MAR module could be 0.83 USD/m3 with a payback period of 6.24 years (NPV = 2840 USD and IRR = 10%), retrieving profits from pollution reduction (9542 USD/yr), biogas selling (10418 USD/yr), and carbon credit (10294 USD/yr).


Assuntos
Reatores Biológicos , Dicloretos de Etileno , Microbiota , Humanos , Anaerobiose , Biocombustíveis , Carvão Vegetal , Metano
7.
Sci Total Environ ; 924: 171557, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38460704

RESUMO

Swine wastewater (SW), characterized by highly complex organic and nutrient substances, poses serious impacts on aquatic environment and public health. Furthermore, SW harbors valuable resources that possess substantial economic potential. As such, SW treatment technologies place increased emphasis on resource recycling, while progressively advancing towards energy saving, sustainability, and circular economy principles. This review comprehensively encapsulates the state-of-the-art knowledge for treating SW, including conventional (i.e., constructed wetlands, air stripping and aerobic system) and resource-utilization-based (i.e., anaerobic digestion, membrane separation, anaerobic ammonium oxidation, microbial fuel cells, and microalgal-based system) technologies. Furthermore, this research also elaborates the key factors influencing the SW treatment performance, such as pH, temperature, dissolved oxygen, hydraulic retention time and organic loading rate. The potentials for reutilizing energy, biomass and digestate produced during the SW treatment processes are also summarized. Moreover, the obstacles associated with full-scale implementation, long-term treatment, energy-efficient design, and nutrient recovery of various resource-utilization-based SW treatment technologies are emphasized. In addition, future research prospective, such as prioritization of process optimization, in-depth exploration of microbial mechanisms, enhancement of energy conversion efficiency, and integration of diverse technologies, are highlighted to expand engineering applications and establish a sustainable SW treatment system.


Assuntos
Fontes de Energia Bioelétrica , Águas Residuárias , Animais , Suínos , Estudos Prospectivos , Reatores Biológicos , Tecnologia
8.
Chemosphere ; 353: 141535, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403121

RESUMO

Recovering resources from wastewater to alleviate the energy crisis has become the prevailing trend of technological development. Purple phototrophic bacteria (PPB), a group of fast-growing microbes, have been widely noticed for their potential in producing value-added products from waste streams. However, saline contents in these waste streams, such as food processing wastewater pose a big challenge, which not only restrain the pollutant removal efficiency, but also hinder the growth of functional microbes. To overcome this, a photo anaerobic membrane bioreactor cultivating PPB (PPB-MBR) was constructed and its performance upon long-term salinity stress was investigated. PPB-MBR achieved desirable pollutants removal performance with the average COD and NH4+ removal efficiency being 87% (±8%, n = 87) and 89% (±10%, n = 87), respectively during long-term exposure to salinity stress of 1-80 g NaCl L-1. PPB were predominant during the entire operation period of 87 days (60%-80%), obtaining maximum biomass yield of 0.67 g biomass g-1 CODremoved and protein productivity of 0.18 g L-1 d-1 at the salinity level of 20 g NaCl L-1 and 60 g NaCl L-1, respectively. The sum of value-added products in proportion to the biomass reached 58% at maximum at the salinity level of 60 g NaCl L-1 with protein, pigments and trehalose contributing to 44%, 8.7%, and 5%, respectively. Based on economic analysis, the most cost-saving scenario treating food processing wastewater was revealed at salinity level of around 20 g NaCl L-1. However, more optimization tools are needed to boost the production efficiency so that the profit from value-added products can outweigh the additional cost by excess salinity in the future implication.


Assuntos
Poluentes Ambientais , Águas Residuárias , Proteobactérias , Eliminação de Resíduos Líquidos , Bactérias , Cloreto de Sódio , Reatores Biológicos/microbiologia , Bactérias Anaeróbias , Salinidade
9.
Water Res ; 253: 121315, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382289

RESUMO

The microalgal-bacterial granular sludge (MBGS) based enhanced biological phosphorus removal (EBPR) (MBGS-EBPR) was recently proposed as a sustainable wastewater treatment process. Previous work showed the possibility of obtaining an MBGS-EBPR process starting from mature MBGS and phosphate-accumulating organisms (PAOs) enriched aerobic granular sludge (AGS) and validated the effectiveness of removing carbon/nitrogen/phosphorus with mechanical aeration. The present work evaluated whether the same could be achieved starting from conventional activated sludge and operating under aeration-free conditions in an alternating dark/light photo-sequencing batch reactor (PSBR). We successfully cultivated filamentous MBGS with a high settling rate (34.5 m/h) and fast solid-liquid separation performance, which could be attributed to the proliferation of filamentous cyanobacteria and stimulation of extracellular polymeric substances (EPS) production. The process achieved near-complete steady-state removal of carbon (97.2 ± 1.9 %), nitrogen (93.9 ± 0.7 %), and phosphorus (97.7 ± 1.7 %). Moreover, improved phosphorus release/uptake driven by photosynthetic oxygenation under dark/light cycles suggests the enrichment of PAOs and the establishment of MBGS-EBPR. Batch tests showed similar phosphorus release rates in the dark but significantly lower phosphorus uptake rates in the presence of light when the filamentous granules were disrupted. This indicates that the filamentous structure of MBGS has minor limitations on substrate mass transfer while exerting protective effects on PAOs, thus playing an important role in sustaining the function of aeration-free EBPR. Microbial assays further indicated that the enrichment of filamentous cyanobacteria (Synechocystis, Leptoolybya, and Nodosilinea), putative PAOs and EPS producers (Hydrogenophaga, Thauera, Flavobacterium, and Bdellovibrio) promoted the development of filamentous MBGS and enabled the high-efficient pollutant removal. This work provides a feasible and cost-effective strategy for the startup and operation of this innovative process.


Assuntos
Microalgas , Esgotos , Esgotos/química , Fósforo , Reatores Biológicos/microbiologia , Fosfatos , Bactérias , Nitrogênio , Carbono
10.
Cytotherapy ; 26(4): 372-382, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38363250

RESUMO

BACKGROUND AIMS: Human mesenchymal stromal cells (hMSCs) and their secreted products show great promise for treatment of musculoskeletal injury and inflammatory or immune diseases. However, the path to clinical utilization is hampered by donor-tissue variation and the inability to manufacture clinically relevant yields of cells or their products in a cost-effective manner. Previously we described a method to produce chemically and mechanically customizable gelatin methacryloyl (GelMA) microcarriers for culture of hMSCs. Herein, we demonstrate scalable GelMA microcarrier-mediated expansion of induced pluripotent stem cell (iPSC)-derived hMSCs (ihMSCs) in 500 mL and 3L vertical wheel bioreactors, offering several advantages over conventional microcarrier and monolayer-based expansion strategies. METHODS: Human mesenchymal stromal cells derived from induced pluripotent cells were cultured on custom-made spherical gelatin methacryloyl microcarriers in single-use vertical wheel bioreactors (PBS Biotech). Cell-laden microcarriers were visualized using confocal microscopy and elastic light scattering methodologies. Cells were assayed for viability and differentiation potential in vitro by standard methods. Osteogenic cell matrix derived from cells was tested in vitro for osteogenic healing using a rodent calvarial defect assay. Immune modulation was assayed with an in vivo peritonitis model using Zymozan A. RESULTS: The optical properties of GelMA microcarriers permit noninvasive visualization of cells with elastic light scattering modalities, and harvest of product is streamlined by microcarrier digestion. At volumes above 500 mL, the process is significantly more cost-effective than monolayer culture. Osteogenic cell matrix derived from ihMSCs expanded on GelMA microcarriers exhibited enhanced in vivo bone regenerative capacity when compared to bone morphogenic protein 2, and the ihMSCs exhibited superior immunosuppressive properties in vivo when compared to monolayer-generated ihMSCs. CONCLUSIONS: These results indicate that the cell expansion strategy described here represents a superior approach for efficient generation, monitoring and harvest of therapeutic MSCs and their products.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Mesenquimais , Humanos , Técnicas de Cultura de Células/métodos , Reatores Biológicos , Osteogênese , Regeneração Óssea , Proliferação de Células , Diferenciação Celular , Células Cultivadas
11.
Sci Total Environ ; 921: 170995, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38378066

RESUMO

In recent years water demand drastically increased which is particularly evident in tourism-burdened mountain regions. In these areas, climate neutral circular economy strategies to minimize human impact on the environment can be successfully applied. Among these strategies, treated wastewater reuse and retaining water in storage reservoirs deserve particular attention. This study aimed to determine if recycled water produced with two circular economy systems, namely membrane bioreactor treatment plant (MBR) with UV-light effluent disinfection and a storage reservoir, is safe enough for further use in green areas irrigation in summer and artificial snow production in winter. The assessment was based on the presence and concentration of antimicrobial agents, antibiotic resistant bacteria, antibiotic resistance genes, bacterial community composition and diversity. The treated water and wastewater was compared with natural water in their vicinity. Both systems fulfill the criteria set by the European Union in terms of reclaimed water suitable for reuse. Although the MBR/UV light wastewater treatment substantially reduced the numbers of E. coli and E. faecalis (from e.g. 32,000 CFU/100 ml to 20 CFU/100 ml and 15,000 CFU/100 ml to nearly 0 CFU/ml), bacteria resistant to ampicillin, aztreonam, cefepime, ceftazidime, ertapenem and tigecycline, as well as ESBL-positive and multidrug resistant E. coli were highly prevalent in MBR-treated wastewater (88.9 %, 55.6 %, 33.3 %, 22.2 % and 11.1 % and 44.4 and 55.6 %, respectively). Applying additional tertiary treatment technology is recommended. Retaining water in storage reservoirs nearly eliminated bacterial contaminants (e.g. E. coli dropped from 350 CFU/100 ml to 10 CFU/100 ml), antibiotic resistant bacteria, resistance genes (none detected in the storage reservoir) and antibiotics (only enrofloxacin detected once in the concentration of 3.20 ng/l). Findings of this study point to the limitations of solely culture-based assessment of reclaimed water and wastewater while they may prove useful in risk management and prevention in wastewater reuse.


Assuntos
Escherichia coli , Águas Residuárias , Humanos , Água , Antibacterianos , Bactérias/genética , Reatores Biológicos
12.
Bioresour Technol ; 397: 130493, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403171

RESUMO

Energy-efficient wastewater treatment units are imperative to achieve carbon neutrality and a circular economy at the industrial scale. In the present study, pyrochar loading and digestion temperature were tested to assess their impact on the performance of an anaerobic digester running on distillery wastewater. The digestion temperature (37 °C and 55 °C) and pyrochar loading (7.5 - 30 g/L.feed) were selected as two primary design factors. Experiments were designed using Taguchi's design of experiments and specific methane yield, total ammonia nitrogen, pH and buffering capacity were selected as experimental outputs for multi-criteria assessment. The results from the confirmation test indicated that the addition of pyrochar (7.5 g/Lfeed) improved the methane yield (276 ± 15 L/kg VS) significantly compared to the control (167 ± 15 L/kg VS) at 37 °C. The detailed post-digestion analysis showed that the adsorption of ammonia on pyrochar may be the primary reason for enhanced digester performance.


Assuntos
Amônia , Águas Residuárias , Anaerobiose , Temperatura , Metano , Reatores Biológicos
13.
Environ Res ; 246: 118035, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199477

RESUMO

Nitrification of ammoniacal nitrogen (N-NH4+) to nitrate (N-NO3-) was investigated in a lab-scale sequencing batch reactor (SBR) to evaluate its efficiency. During the nitrification process the removal of N-NH4+ reached 96%, resulting in 73% formation of N-NO3-. A lineal correlation (r2 = 0.9978) was obtained between the concentration of volatile suspended solids (VSS) and the maximal N-NO3- concentration at the end of each batch cycle under stationary state. The bacterial taxons in the initial inoculum were identified, revealing a complex diverse community mainly in the two major bacterial phyla Proteobacteria and Actinobacteria. The FAPROTAX algorithm predicted the presence in the inoculum of taxa involved in relevant processes of the nitrogen metabolism, highlighting the bacterial genera Nitrospira and Nitrosomonas that are both involved in the nitrification process. A kinetic model was formulated for predicting and validating the transformation of N-NH4+, N-NO2- and N-NO3- and the removal of organic and inorganic carbon (TOC and IC, respectively). The results showed how the increase in biomass concentration slowed down the transformation to oxidised forms of nitrogen and increased denitrification in the settling and filling stages under free aeration conditions.


Assuntos
Desnitrificação , Nitrificação , Reatores Biológicos/microbiologia , Genômica , Bactérias/genética , Bactérias/metabolismo , Nitrogênio/análise , Esgotos/microbiologia
14.
Biotechnol Bioeng ; 121(3): 877-893, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38214109

RESUMO

A demand for process intensification in biomanufacturing has increased over the past decade due to the ever-expanding market for biopharmaceuticals. This is largely driven by factors such as a surge in biosimilars as patents expire, an aging population, and a rise in chronic diseases. With these market demands, pressure upon biomanufacturers to produce quality products with rapid turnaround escalates proportionally. Process intensification in biomanufacturing has been well received and accepted across industry based on the demonstration of its benefits of improved productivity and efficiency, while also reducing the cost of goods. However, while these benefits have been shown empirically, the challenges of adopting process intensification into industry remain, from smaller independent start-up to big pharma. Traditionally, moving from batch to a process intensification scheme has been viewed as an "all or nothing" approach involving continuous bioprocessing, in which the factors of complexity and significant capital costs hinder its adoption. In addition, the literature is crowded with a variety of terms used to describe process intensification (continuous, periodic counter-current, connected, intensified, steady-state, etc.). Often, these terms are used inappropriately or as synonyms, which generates confusion in the field. Through a detailed review of current state-of-the-art systems, consumables, and process intensification case studies, we herein propose a defined approach in the implementation of downstream process intensification through a standardized nomenclature and viewing it as distinct independent levels. These can function separately as intensified single-unit operations or be built upon by integration with other process steps allowing for simple, incremental, cost-effective implementation of process intensification in the manufacturing of biopharmaceuticals.


Assuntos
Medicamentos Biossimilares , Biotecnologia , Reatores Biológicos , Indústria Farmacêutica , Eficiência
15.
Environ Pollut ; 344: 123417, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38253163

RESUMO

The study concerned technical feasibility, economic profitability, and carbon footprint (CF) analysis of semi-continuous anaerobic digestion (sAD) of organic fraction of municipal solid waste (OFMSW). The research assessed the pre-treatment effect on sAD by varying organic loading rates (OLR) from 3.38 to 6.75 kgvs/m3d. Three sAD configurations were investigated: hydrodynamic-cavitated (HC-OFMSW), enzymatically pre-treated (EN-OFMSW), and non-pre-treated (AD-OFMSW). Principal Component Analysis and Supervised Kohonen's Self-Organizing Maps combined the experimental, economic, and environmental evaluations. The sAD configurations were grouped predominantly according to the OLR however, within each OLR group the configurations were clustered according to the pre-treatments. The finding highlighted that pre-treatments offset inhibition in sAD of OFMSW due to the OLR increase, being economically profitable and CF negative up to 4.50 kgvs/m3d for EN-OFMSW and to 5.40 kgvs/m3d for HC-OFMSW. Whereas sAD-OFMSW remained economically and environmentally viable only up to 3.87 kgvs/m3d. HC-OFMSW reached the highest performance. In detail, for HC-OFMSW the NPV and CF ranged from 17679.30 to 43827.12 euros and from -51.08 to -407.210 kg CO2eq/1 MWh daily produced, by decreasing the OLR from 5.40 to 3.87 kgvs/m3d. These results are fundamental since pre-treatment is usually expensive due to additional energy or chemical requirements.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Análise Custo-Benefício , Anaerobiose , Algoritmos , Hidrodinâmica , Reatores Biológicos , Metano
16.
Sci Total Environ ; 913: 169721, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38171461

RESUMO

The textile industry is one of the most chemical-intensive processes, resulting in the unquestionable pollution of more than a quarter of the planet's water bodies. The high recalcitrant properties of some these pollutants resulted on the development of treatment technologies looking at the larger removal efficiencies, due to conventional systems are not able to completely remove them in their effluents. However, safeguarding the environment also implies taking into account indirect pollution from the use of chemicals and energy during treatment. On the other hand, the emerged technologies need to be economically attractive for investors and treatment managers. Therefore, the costs should be kept under control. For this reason, the present study focuses on a comparative Life Cycle Assessment and Life Cycle Costing of four scale-up scenarios aiming at mono and di-azo reactive dyes removal from textile wastewater. Two reactors (sequencing batch reactor and two-phase partitioning) were compared for different reaction environments (i.e., single anaerobic and sequential anaerobic-aerobic) and conditions (different pH, organic loading rates and use of polymer). In accordance with the results of each scenario, it was found that the three technical parameters leading to a change in the environmental profiles were the removal efficiency of the dyes, the type of dye eliminated, and the pollutant influent concentration. The limitation of increasing organic loading rates related to the biomass inhibition could be overcame through the use of a novel two-phased partitioning bioreactor. The use of a polymer at this type of system may help restore the technical performance (84.5 %), reducing the toxic effects of effluents and consequently decreasing the environmental impact. In terms of environmental impact, this is resulting into a reduction of the toxic effects of textile effluents in surface and marine waters compared to the homologous anaerobic-aerobic treatment in a sequencing batch reactor. However, the benefits achieved for the nature comes with an economic burden related to the consumption of the polymer. It is expected that the cost of investment of the treatment with the two-phase partitioning bioreactor rises 0.6-8.3 %, depending on market prices, compared to the other analyzed sequential anaerobic-aerobic technologies. On the other side, energy and chemical consumption did not prove to be limiting factors for economic feasibility.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Humanos , Corantes , Compostos Azo , Polímeros , Reatores Biológicos , Têxteis , Eliminação de Resíduos Líquidos/métodos
17.
Bioprocess Biosyst Eng ; 47(2): 235-247, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38170236

RESUMO

This paper presents the analysis of a pilot anaerobic digestion plant that operates with organic fraction of municipal solid waste (OFMSW) from a wholesale market and can treat up to 500 kg d-1. The process was monitored for a period of 524 days during which the residue was characterized and the biogas production and methane content were recorded. The organic load rate (OLR) of volatile solids (VS) was 0.89 kg m-3 d-1 and the Hydraulic Retention Time (HRT) was 25 d during the process. The yield was 82 Nm3 tons OFMSW-1 biogas, equivalent to 586 Nm3 tons CH4 VS-1. The results obtained in the pilot plant were used to carry out a technical-economic evaluation of a plant that treats 50 tons of OFMSW from wholesale markets. A production of 3769 Nm3 d-1 of biogas and 2080 Nm3 d-1 of methane is estimated, generating 35.1 MWh d-1 when converted to electricity.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Resíduos Sólidos/análise , Eliminação de Resíduos/métodos , Anaerobiose , Biocombustíveis , Reatores Biológicos , Metano
18.
J Environ Manage ; 353: 120158, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38271883

RESUMO

Granular sludge has been recognized as an effective method for the application and industrialization of the anammox-based process due to its good biomass retention capacity and environmental tolerance. In this study, a one-stage autotrophic nitrogen removal (ANR) dual-partition system with airlift internal circulation was implemented for 320 days. A high nitrogen removal efficiency of 84.6% was obtained, while the nitrogen removal rate reached 1.28 g-N/L/d. ANR granular sludge dominated by Nitrosomonas and Candidatus Brocadia was successfully cultivated. Results showed that activity and abundance of functional flora first increased with granulation process, but eventually declined slightly when particle size exceeded the optimal range. Total anammox activity was observed to be significantly correlated with protein content (R2 = 0.9623) and nitrogen removal performance (R2 = 0.8796). Correlation network revealed that AnAOB had complex interactions with other bacteria, both synergy for nitrogen removal and competition for substrate. Changes in abundances of genes encoding the Carbohydrate Metabolism, Energy Metabolism, and Membrane Transport suggested energy production and material transfer were possibly blocked with further sludge granulation. Formation of ANR granular sludge promoted the interactions and metabolism of functional microorganisms, and the complex nitrogen metabolic pathways improved the performance stability. These results validated the feasibility of granule formation in the airlift dual-partition system and revealed the response of the ANR system to sludge granulation.


Assuntos
Nitrogênio , Esgotos , Oxirredução , Nitrogênio/análise , Desnitrificação , Reatores Biológicos/microbiologia
19.
Water Environ Res ; 96(1): e10961, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38212140

RESUMO

Phosphorous (P) removal in wastewater treatment is essential to prevent eutrophication in water bodies. Side-stream enhanced biological phosphorous removal (S2EBPR) is utilized to improve biological P removal by recirculating internal streams within a side-stream reactor to generate biodegradable carbon (C) for polyphosphate accumulating organisms (PAOs). In this study, a full-scale S2EBPR system in a water resource recovery facility (WRRF) was evaluated for 5 months. Batch experiments revealed a strong positive correlation (r = 0.91) between temperature and C consumption rate (3.56-8.18 mg-COD/g-VSS/h) in the system, with temperature ranging from 14°C to 18°C. The anaerobic P-release to COD-uptake ratio decreased from 0.93 to 0.25 mg-P/mg-COD as the temperature increased, suggesting competition between PAOs and other C-consumers, such as heterotrophic microorganisms, to uptake bioavailable C. Microbial community analysis did not show a strong relationship between abundance and activity of PAO in the tested WRRF. An assessment of the economic feasibility was performed to compare the costs and benefits of a full scale WRRF with and without implementation of the S2EBPR technology. The results showed the higher capital costs required for S2EBPR were estimated to be compensated after 5 and 11 years of operation, respectively, compared to chemical precipitation and conventional EBPR. The results from this study can assist in the decision-making process for upgrading a conventional EBPR or chemical P removal process to S2EBPR. PRACTITIONER POINTS: Implementation of S2EBPR presents adaptable configurations, exhibiting advantages over conventional setups in addressing prevalent challenges associated with phosphorous removal. A full-scale S2EBPR WRRF was monitored over 5 months, and activity tests were used to measure the kinetic parameters. The seasonal changes impact the kinetic parameters of PAOs in the S2EBPR process, with elevated temperatures raising the carbon demand. PAOs abundance showed no strong correlation with their activity in the full-scale S2EBPR process in the tested WRRF. Feasibility assessment shows that the benefits from S2EBPR operation can offset upgrading costs from conventional BPR or chemical precipitation.


Assuntos
Reatores Biológicos , Polifosfatos , Fósforo , Cinética , Carbono
20.
Chemosphere ; 351: 141250, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242520

RESUMO

Cheese whey (CW) is a nutrient deficient dairy effluent, which requires external nutrient supplementation for aerobic treatment. CW, supplemented with ammonia, can be treated using aerobic granular sludge (AGS) in a sequencing batch reactor (SBR). AGS are aggregates of microbial origin that do not coagulate under reduced hydrodynamic shear and settle significantly faster than activated sludge flocs. However, granular instability, slow granulation start-up, high energy consumption and CO2 emission have been reported as the main limitations in bacterial AGS-SBR. Algal-bacterial granular systems have shown be an innovative alternative to improve these limitations. Unfortunately, algal-bacterial granular systems for the treatment of wastewaters with higher organic loads such as CW have been poorly studied. In this study, an algal-bacterial granular system implemented in a SBR (SBRAB) for the aerobic treatment of ammonia-supplemented CW wastewaters was investigated and compared with a bacterial granular reactor (SBRB). Mass balances were used to estimate carbon and nitrogen (N) assimilation, nitrification and denitrification in both set-ups. SBRB exhibited COD and ammonia removal of 100% and 94% respectively, high nitrification (89%) and simultaneous nitrification-denitrification (SND) of 23% leading to an inorganic N removal of 30%. The efficient algal-bacterial symbiosis in granular systems completely removed COD and ammonia (100%) present in the dairy wastewater. SBRAB microalgae growth could reduce about 20% of the CO2 emissions produced by bacterial oxidation of organic compounds according to estimates based on synthesis reactions of bacterial and algal biomass, in which the amount of assimilated N determined by mass balance was taken into account. A lower nitrification (75%) and minor loss of N by denitrifying activity (<5% Ng, SND 2%) was also encountered in SBRAB as a result of its higher biomass production, which could be used for the generation of value-added products such as biofertilizers and biostimulants.


Assuntos
Microalgas , Águas Residuárias , Esgotos/microbiologia , Nitrogênio/análise , Carbono , Simbiose , Amônia , Dióxido de Carbono , Reatores Biológicos , Nitrificação , Bactérias , Desnitrificação , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA